civity Management Consultants

Machine Learning for Transport Modelling

the Next Generation of Transport Models

8th GeoIT Wherecamp Conference 2018

Berlin, 24th October 2018 | Andreas Wolf & Benno Bock

© civity 2018 /// 02000XXX_Vortrag_GeoIT_v2.pptx

We offer solutions for communal companies: from the automotive sector to waste management

Industries & customers

The strength of civity lies in the interaction of technical expertise and methodological competence.

Interaction of technical expertise and methodological competence

Technical expertise and methodological competence of civity

Our R&D projects depict an interesting contrast between new mobility providers and classic PT operators

R&D projects for mobility demand forecasting

European Car-Manufacturer

Identification and evaluation of the market potential for tier-2 cities in Europe based on mobile phone cell data. Derivation of a market entry strategy including a scalable value proposition for individual markets.

civity matters No. 1

Study on free-floating car sharing in European cities. The focus is on the evaluation of the traffic and economic relevance of the new system in comparison to public transport.

LogFile Analysis

Study for the evaluation of LogFiles generated via a PT information app. Correlation analyses with data from automated passenger counts. Conclusions on extrapolation of results.

© civity 2018 /// 02000XXX_Vortrag_GeoIT_v2.pptx

Transport modelling is strongly influenced by innovations in methodology, computing capacity and data availability

Relevant methods for transport modelling

For the xMND-approach we use an machine learning approach to estimate mobility demand

Idea and first approach

- Floating Phone Data (FDP) → Origin-Destination-Matrix on postal code level
- Fine-grained data (~10m with 26 categories)
- Europe-wide dataset (cities and functional urban citiy areas)
- Many other fine-grained spatial data available

© civity 2018 /// 02000XXX_Vortrag_GeoIT_v2.ppt

For the xMND-approach we use an machine learning approach to estimate mobility demand

Machine learning with floating phone data (ML FPD)

© civity 2018 /// 02000XXX_Vortrag_GeoIT_v2.pptx

The first approach already shows mixed results

Initial results for German postal areas

Measured and modelled daily demand curves

500

Mean absolute errors for estimations of incoming movements, workdays 4PM

© civity 2018 /// 02000XXX_Vortrag_GeoIT_v2.ppt

Additional spatial data and different approaches can lead to further improvements

Main challenges

Data

Population data (Zensus)

Area data (e.g. size)

Bigger trainingset with more cities

Models

OD-relations

Adjusting layers

Hyperparameter optimisation

Projection

Arbitary grid

Disaggregation of cell relations

ivity 2018 // 02000XXX_Vortrag_GeoIT_v2.pptx

The primary use-case in the xMND context will be the revenue distribution for integrated PT services

Use-case revenue distribution for PT

EXAMPLE

Principle	Measurement	Calculation for DB SBM	Revenue
Entries	One entry each vehicle	[1 / (1 + 1 + 1)] x 10 €	= 3.33 € 🕥
Pkm	Kilometres travelled	[20 km / (20 km + 10 km + 2 km)] x 10 €	= 6.25 € 🕗
Tarif zones ¹⁾	Rail: 3.5 Regional bus: 2 Urban bus: 0.5	[3.5 / (3.5 + 2 + 0.5)] x 10 €	= 5.83 € 🗢
Entries und Pkm	15 % und 85 %	3.33 € x 15% + 6.25 € x 85%	= 5.81 € 👄

Assumption: single ticket price 10 €

¹⁾ Assumption: Interchange zones count 50% for each provider

Thank you for your attention!

Benno Bock

Oranienburger Str. 5 10178 Berlin-Mitte phone: +49 (0)30 688 135 22 17 mobile: +49 (0)177 633 75 22 email: benno.bock@civity.de www.civity.de

Andreas Wolf

Oranienburger Str. 5 10178 Berlin-Mitte phone: +49 (0)30 688 135 22 13 email: andreas.wolf@civity.de

www.civity.de

