Smart Multispectral Monitoring System of the Real-Time Estimation of Water Stress in the Crop and Automatic Irrigation (PLANTSENS)

Lukasz Rojek 7th November 2018

Beuth Hochschule für Technik in Berlin

Lukasz Rojek M.Sc., WhereCamp, 7th November 2018

Outline

- 1. Introduction
- 2. System Configuration
- 3. Materials and Methods

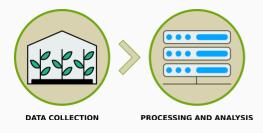
Measurement Methods

Crop Water Stress Index

Image Processing

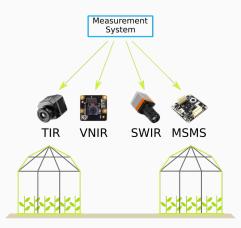
Communication Protocol

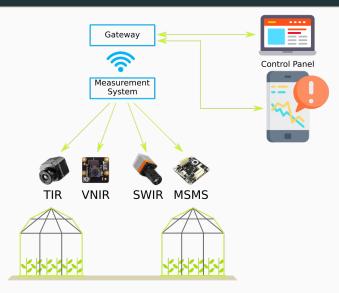
4. Test Field

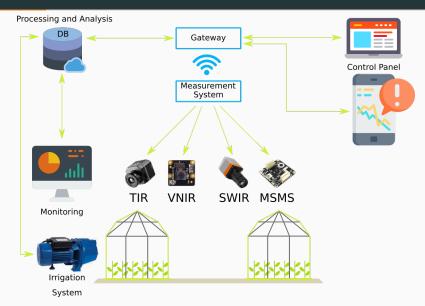

Introduction

Remote	sensing of water deficiency stress in crops.		
Automatic	precise crop irrigation based multispectral		
	imaging.		
Targeted	resource-sensitive water supply.		
Precise	geo-referenced monitoring system.		

Remote	sensing of water deficiency stress in crops.	
Automatic	precise crop irrigation based multispectral	
	imaging.	
Targeted	resource-sensitive water supply.	
Precise	geo-referenced monitoring system.	


Remote	sensing of water deficiency stress in crops.		
Automatic	precise crop irrigation based multispectral		
	imaging.		
Targeted	resource-sensitive water supply.		
Precise	geo-referenced monitoring system.		



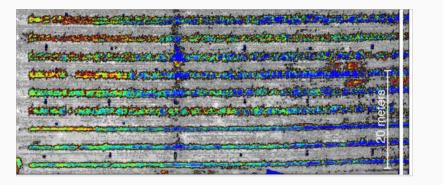

Remote	sensing of water deficiency stress in crops.		
Automatic	precise crop irrigation based multispectral		
	imaging.		
Targeted	resource-sensitive water supply.		
Precise	geo-referenced monitoring system.		

Lukasz Rojek M.Sc., WhereCamp, 7th November 2018

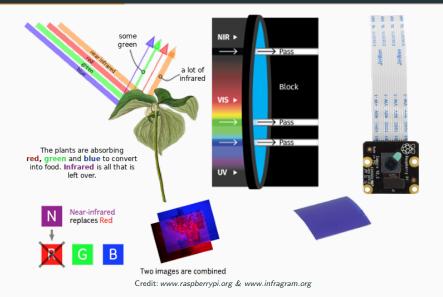
Materials and Methods

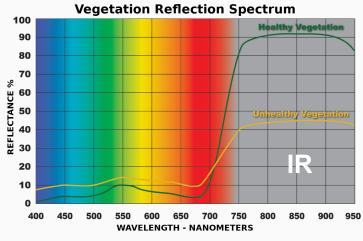
What are the Measurement Methods ?

Correlation	between temperature and water content of the
	crop.
Reflection	of the s hort- w ave i nfra r ed (swir) radiation
	(1450 nm) for estimating the water content.
Thermal imaging	for estimating the plant temperature.
Camera System	mounted on rails (indoor), i.e. greenhouse and
	UAV (outdoor).

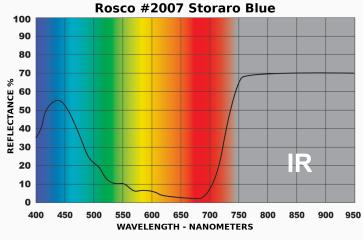

Came	eras		Hyperspectral		
	VIS	IR	NIR/SWIR		TIR/LWIR
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 7.5-13x10 ³ Wavelength (nm)					
υv	Visible	Near-infrared	Short-wave infrared		Long-wave infrared
Water content Temperature Chlorophyll content, photosystem II guantum efficiency					
			Credit: www.sciencedirect.com		

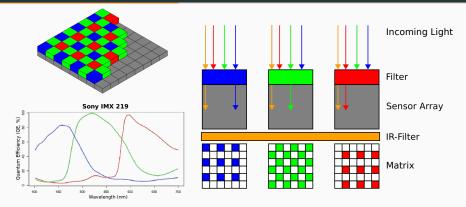
Lukasz Rojek M.Sc., WhereCamp, 7th November 2018


The Crop Water Stress Index can be used as an indicator of stomatal closure and water deficit stress as well as a means for targeted and precise irrigation.


$$\text{CWSI} = \frac{T_{\text{leaf}} - T_{\text{wet}}}{T_{\text{dry}} - T_{\text{wet}}}$$

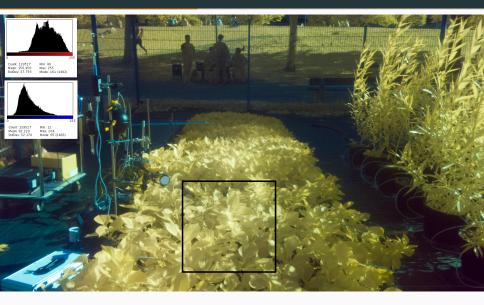
 $T_{leaf} \dots$ is the current leaf temperature. $T_{wet} \dots$ is the lower boundary for leaf temperature. $T_{dry} \dots$ is the upper boundary for leaf temperature.

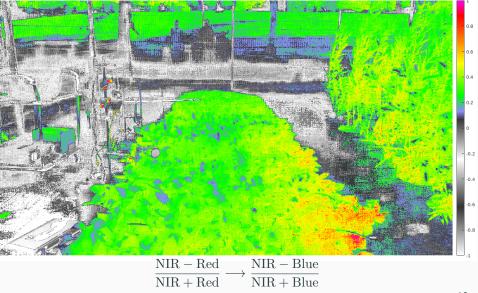

How does the Visible Near Infrared (VNIR) work ?


Credit: www.rosco.com

Rosco Storaro Blue

Credit: www.rosco.com


Bayer-Filter


IMX219

The Sony IMX219 CMOS Sensor uses the Bayer filter in visible spectral range from 400 to 700 nm. The filter pattern has the BGGR channel order.

Normalized Difference Vegetation Index (NDVI)

Normalized Difference Vegetation Index (NDVI)

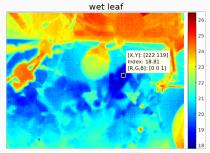
Lukasz Rojek M.Sc., WhereCamp, 7th November 2018

Normalized Difference Vegetation Index (NDVI)

Thermal Infrared (TIR)

Credit: www.flir.com

Resolution	336×256 p×
Lens	13mm; 25° x 19°
Spectral Range	7.5 - 13.5 µm
File Formats	JPEG, RJPEG, TIFF
Interfaces	USB, PWM, MAVLink


Wet Leaf (lower boundary)

metadata

Emissivity	0.94
Object Distance	0.00 m
Reflected Apparent Temperature	-30.0 C
Atmospheric Temperature	25.0 C
IR Window Temperature	22.0 C
IR Window Transmission	1.00
Relative Humidity	45.0 %
Planck R1	17096.453
Planck B	1428
Planck F	1
Atmospheric Trans Alpha 1	0.006569
Atmospheric Trans Alpha 2	0.012620
Atmospheric Trans Beta 1	-0.002276
Atmospheric Trans Beta 2	-0.006670
Atmospheric Trans X	1.900000

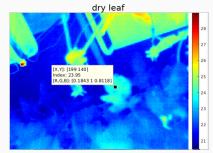
14 bit raw data

	220	221	222	223
118	3112	3096	3096	3099
119	3099	3105	3109	3096
120	3085	3096	3107	3092
121	3099	3107	3106	3107
122	3102	3105	3097	3107
123	3098	3100	3107	3107
124	3097	3096	3113	3107
125	3102	3107	3116	3112

temperature (°C)

	220	221	222	223
118	18.8675	18.5386	18.5386	18.6004
119	18.6004	18.7238	18.8059	18.5386
120	18.3119	18.5386	18.7649	18.4562
121	18.6004	18.7649	18.7443	18.7649
122	18.6621	18.7238	18.5592	18.7649
123	18.5798	18.6210	18.7649	18.7649
124	18.5592	18.5386	18.8880	18.7649
125	18.6621	18.7649	18.9496	18.8675

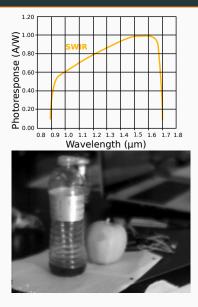
Lukasz Rojek M.Sc., WhereCamp, 7th November 2018


Dry Leaf (upper boundary)

me	tac	a	ta

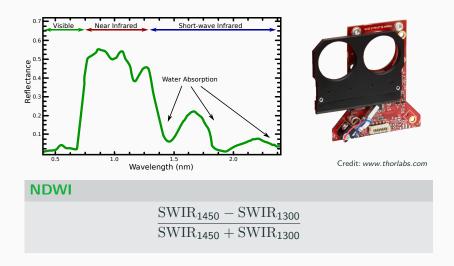
Emissivity	0.94
Object Distance	0.00 m
Reflected Apparent Temperature	-30.0 C
Atmospheric Temperature	25.0 C
IR Window Temperature	22.0 C
IR Window Transmission	1.00
Relative Humidity	45.0 %
Planck R1	17096.453
Planck B	1428
Planck F	1
Atmospheric Trans Alpha 1	0.006569
Atmospheric Trans Alpha 2	0.012620
Atmospheric Trans Beta 1	-0.002276
Atmospheric Trans Beta 2	-0.006670
Atmospheric Trans X	1.900000

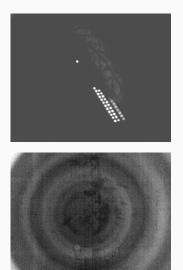
14 bit raw data

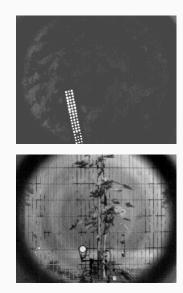

	197	198	199	200
139	3346	3356	3357	3356
140	3364	3351	3359	3356
141	3351	3335	3355	3350
142	3348	3341	3346	3346
143	3343	3343	3343	3351
144	3338	3347	3346	3343
145	3339	3335	3339	3336
146	3336	3334	3334	3339

temperature (°C)

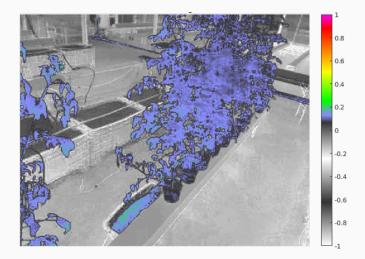
	197	198	199	200
139	23.6947	23.8902	23.9097	23.8902
140	24.0462	23.7925	23.9487	23.8902
141	23.7925	23.4597	23.8706	23.7730
142	23.7339	23.5969	23.6947	23.6947
143	23.6360	23.6360	23.6360	23.7925
144	23.5185	23.7143	23.6947	23.6360
145	23.5381	23.4597	23.5381	23.4794
146	23.4794	23.4401	23.4401	23.5381

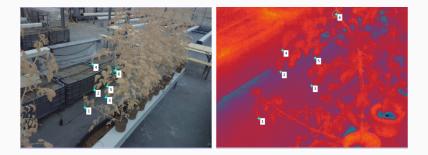

Short Wave Infrared (SWIR)




Resolution	336x256 px	
Sensor Type	InGaAs	
Spectral Range	0.9 - 1.7 μm	
Depth	14-bit	
Interface	GigE	

Lukasz Rojek M.Sc., WhereCamp, 7th November 2018


1450nm vs 1300nm

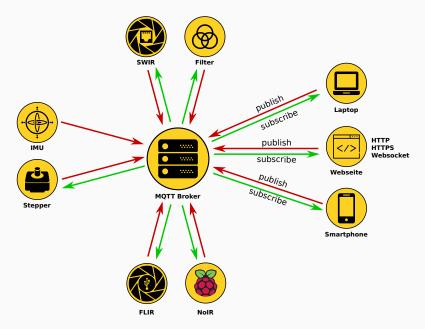

Lukasz Rojek M.Sc., WhereCamp, 7th November 2018

NoIR

Threshold

NoIR Mask

Thermal

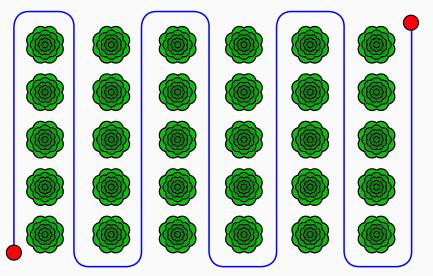


Overlap

Cut-Off

Lukasz Rojek M.Sc., WhereCamp, 7th November 2018

Test Field


Rail System

Prototype

Route

Lukasz Rojek M.Sc., WhereCamp, 7th November 2018

Questions ?

Lukasz Rojek M.Sc., WhereCamp, 7th November 2018